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Abstract. On the basis of a two-sublattice approximation of antiferromagnets, it is obtained 
that ground states of quasi-two-dimensional Heisenberg antiferromagnets on simple cubic 
lattices areNCelstateswhose meanstaggered spin is equivalent to 0.303-0.422 corresponding 
to J,/JIl = 0-1. The low-temperature mean magnetic moment and NCel temperature are 
calculated for various J, /Jl , .  There is no NCel ordering at any non-zero temperature in two- 
dimensional antiferromagnets. J ,  is necessary to maintain NCel ordering at finite tempera- 
tures. 

La2_*(Ba, Sr),Cu04 ( x  < 0.03) and RBa2C~306+y (y < 0.4) exhibit three-dimensional 
NCel antiferromagnetic (AFM) ordering with a staggered magnetic moment of about 
0 . 6 ~ ~  (pB is the Bohr magneton), and their NCel temperatures are about 300 K and 
450 K, respectively [l]. Coupling between Cu02 planes is much weaker than in-plane 
coupling. Their two-dimensional (ZD) excitations are spin waves with Heisenberg coup- 
ling constants J of 950 and 1300 K in La-(Ba, Sr)-Cu-0 and R-Ba-Cu-0, respectively 
[2]. The cupric oxide materials can be described by a quasi-2~ simple cubic Hubbard 
model with a large on-site Coulomb repulsion [3]. There are no dopants in ideal CuOz 
planes. This corresponds to La2Cu04 and RBa2Cu306. In these cases the Hubbard 
models are half filled and are equivalent to the following AFM Heisenberg model on a 
simple cubic lattice because of the large Coulomb on-site repulsion: 

H = J , S ,  - S i .  (1) 
( i i )  

Jii = Jonly when i and j are nearest-neighbour sites within a single Cu02 plane, and J ,  = 
6J when i and j are nearest-neighbour sites in the direction perpendicular to CuOz 
planes. 

If 6 = 0, the Hamiltonian (1) reduces to a 2~ Heisenberg AFM model on a square 
lattice: 

where (kl)  are the nearest-neighbour sites within a 2~ square lattice or a single CuOz 
plane. 
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In [4] a 2+1-dimensional non-linear sigma model was used to approximate the 2~ 
AFM Heisenberg model (2) and it was found that the correlation length had a renormalised 
classical behaviour K - ~  = exp( -A/T), whereA/Tis not equivalent to zero when Ttends 
to zero. In [5]  a mean-field method was used to investigate the model (2). The approach 
provided a Bose-liquid description of the excitations. In [6], making use of the Monte 
Carlo method, the NCel AFM ordered ground state of the 2~ antiferromagnet (2) on 
32x32 sites of a square lattice, whose staggered spin is 0.334 ? 0.001, was obtained. 

However, the Mermin-Wagner [7] theorem excludes long-range magnetic ordering 
at finite temperatures in the Hamiltonian (2). In the 1960s and 1970s, to describe layer- 
like materials, workers usually introduced anisotropic fields or Ising-like anisotropy in 
their 2~ models [8]. Lines [9] introduced a kind of interlayer coupling J’ but concluded 
that ‘for a given anisotropic field the existence of a non-zero 1’ always decreases TN 
whether its sign is positive or negative’. 

In this paper, we shall use the two-sublattice approximation to investigate the quasi- 
2~ model (1). We obtain the NCel AFM ground states for all 6. The corresponding 
staggered moment is 0.606 ~ ~ - 0 . 8 4 4  pB. The low-temperature moment decreases with 
increasing square of the temperature, but the coefficients of the temperature-squared 
terms approach infinity when 6 tends to zero. This means that ZD Heisenberg anti- 
ferromagnets have no NCel AFM ordering at any non-zero temperature, in agreement 
with the Mermin-Wagner [7] theorem. The Nee1 temperatures for various 6 are calcu- 
lated. The NCel temperatures 300 K and 450 K correspond to 6 = 0.005 and 0.008 for 
LazCuO4 and RBa2Cu306, respectively. When 6 tends to zero, the NCel temperature 
approaches zero as l/ln 6. 6 > 0 or J ,  > 0 is necessary to keep Nee1 ordering at finite 
temperatures. 

Making use of the two-sublattice approximation, we divide the simple cubic lattice 
into two sublattices, labelled a and b. Every sublattice is a FCC lattice. We apply the 
definition that spins on sublattice a are up and spins on sublattice b are down. 

After Holstein-Primakoff transformations of sublattices a and b, Hamiltonian (1) is 
transformed into momentum space (k,, k,,, k,) and then diagonalised (for details, see 
Callaway’s book [lo] or Anderson’s paper [l l]):  

where 

( 2 [l - r2(k)ll’z) 
S E~ = -NJZS~ 1 - zE 

k 

~ ( k )  = JZVl - r 2 ( k )  

r (k )  = (2 COS k ,  + 2 COS k,  + 26 COS k , ) / Z .  

(4) 

In the above equations, N i s  the total site number, S = 4 is the spin on a single site, and 
Z = 4 + 26 is the effective coordination number. Mean lattice a and b spin operators 
S3 = (2/N)ZjSi3 can be expressed in terms of operators Ak and Bk: 

C%k and p k  satisfy ai - p$ = 1 and a$ + p$ = l / m .  The ground state I ) is 
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Table 1. Some mean spins at zero temperature for different 6 = J,&. 

6 1 0.5 0.1 0.05 0.01 
S 0.422 0.412 0.371 0.355 0.327 

6 0.005 0.001 0.0005 0.0001 0 
S 0.320 0.308 0.304 0.303 0.303 

defined by A I ) = B I ) = 0. The mean value of the spin z component in the ground state 
is given by 

The above k-summation can be changed into k-integration when N tends to infinity: 

The integral region is the first Brillouin zone of the FCC lattice. Table 1 presents some 
Si-values corresponding to different &values. As two special cases S i  = 0.422 and0.303 
when 6 = 1 and 0, respectively, in agreement with the results of Anderson [ l l ] .  

To investigate the quasi-2~ antiferromagnet (1) at non-zero temperatures we shall 
use the thermodynamical Green function method in the following. This method was first 
developed by Bogoliubov et a1 [ 121 to investigate Heisenberg ferromagnets, but it 
was used effectively to investigate Heisenberg antiferromagnets as well [8, 9, 131. The 
routine for quasi-zD Heisenberg antiferromagnets is as follows. The general routine can 
be found in [8,9,13]. 

Because of symmetry, we change the Hamiltonian (1) to 

by means of the following transformation: 

i, takes the value on lattice a, andjb on lattice b. 
The retarded and advanced thermodynamical Green functions are defined as 

GR(t  - t’) = ((A(t), B(t’)))R = -iO(t - t’)([A(t), B(t’)]) (12) 

GA(t - t’) = ((A(t), B(t)))* = iO(t - t’)([A(t), B(t’)]) (13) 

where (P)  = Tr[exp(-PH)P]/Tr[exp(-PH)] andA(t) = exp(iHt) A exp(-iHt). 
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Defining 

a d o  ( ~ ( t ’ ) ~ ( t ) )  = 1 % ~ ( w )  exp[-iw(t - t’)] 
--a 

GA(E) and GR(E) can be incorporated into one single Green function C(E) :  

(B(t‘)A(t))  can be expressed in terms of C ( E ) :  

d o  G(o + io+) - G(o - io+) 
( ~ ( t ’ ) ~ ( t ) )  = i 1 - exp[-io(t - t’)]. 

--a 2n  exp(Po> - 1 

Making the cut-off approximation the above two equations reduce to the following two 
equations: 

i - ( ( ~ : ( t ) ,  ~ , ( t ’ ) ) )  = 26(t - t ’ )6 ia ja(S:a)  
d 
d t  

Solving equations (20) and (21), we obtain 

( ( S ; ,  si,)) = 2(s3) 2 exp[ik(i - j ) ]  
k 

Because of equation (17), we have 
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Table 2. Some C and T N / J  for different 6 = J , / J n .  

601 1 

s 1 0.5 0.1 0.05 0.01 0.009 
C 1.516 1.560 1.900 2.107 2.762 2.813 
T N / J  0.989 0.801 0.553 0.476 0.364 0.357 

s 0.008 0.007 0.006 0.005 0.001 0.0005 
C 2.893 2.944 3.056 3.220 6.48 9.2 
TN/J 0.347 0.341 0.328 0.311 0.154 0.11 

where 

As a result we obtain 

(S3) = 6(1 + 2W)-' =; - w. 
Equations (24) and (25) can be used to determine the mean staggered spin (S3) at 

When Tis very small, we have (S3) = f as our zeroth approximation. Letting (S3) = 
any non-zero temperature T = l/kp. 

6 on the right-hand side of equation (25), we have as the first approximation 

(S3) = Si(6) - v ( ~ ) ( T / J Z S ) ~  + O(T/JZS)4. (26) 
The zero-temperature mean spins Sa(6) = 4 - Wo(6)  are presented in table 1. 
v(6) = (2 + 6)3'2/6d/s and v(1) = d\/3/2, which are in agreement with the spin-wave 
theory of Oguchi and Kubo [14]. v(6)  increases with decreasing 6. v approaches infinity 
when 6 --* 0. This means that there is no NCel AFM ordering at any non-zero temperature 
for 6 = 0, or 2~ antiferromagnets, in agreement with the Mermin-Wagner [7] theorem. 

When the temperature approaches the NCel temperature TN, (S3) should tend to 
zero. Therefore the right-hand side of equation (25) can be expanded in terms of (S3). 
In this way, we solve equations (25) and (24) from 

(S3) = [3T(1 - T/TN)/~CTN]'/* (27) 

TN = JZ/4C (28) 

where TN and c are expressed as follows: 

2 1 
= z? 1 - r2(k)' 

Table 2 presents some c- and T,/J-values corresponding to different 6-values. We 
observe that c = when 6 = 0. Again we come to conclusion that there is no NCel AFM 
ordering at any non-zero temperature for 2~ antiferromagnets. 

La2Cu04 has TN/J = 300/950 = 0.316. This value corresponds to 6 = 0.005. For 
RBa2CU306 we have T,/J = 450/1300 = 0.346, which corresponds to 6 = 0.008. We 
conclude that the coupling between CuO, planes in RBa2CU306 is stronger than that in 
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LazCu04. Therefore, the staggered magnetic moments observed at low temperatures 
should be 0 . 6 4 ~ ~  and 0 . 6 5 ~ ~  for LazCu04 and Ba2Cu306, respectively. This is in 
agreement with experimental data [l]. 

In summary, we make use of the two-lattice approximation method to investigate 
the quasi-2~ Heisenberg antiferromagnets (1) on a simple cubic lattice, which are 
believed to describe the magnetic properties of the cupric oxide materials without 
dopants. The ground states of the models are NCel AFM ordering states whose staggered 
spins vary from 0.422 to 0.303, corresponding to 6 = J,/Jl, = 1-0. The low-temperature 
magnetic moments and NCel temperatures are calculated for various &values. There is 
no NCel AFM ordering at any non-zero temperature in 2~ Heisenberg antiferromagnets. 
Comparison with the experimental NCel temperature leads to the conclusion that 
J,/Jli = 0.008 and 0.005 in LazCu04 and RBa&U306. 
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